
Object oriented programming methodologies

B: Vishakha Chourasia Page 1

1. What is modeling?

A model is an abstraction of something for the purpose of understanding it before building it.

Because, real systems that we want to study are generally very complex. In order to understand

the real system, we have to simplify the system. So a model is an abstraction that hides the non-

essential characteristics of a system and highlights those characteristics, which are pertinent to

understand it.

 Most modeling techniques used for analysis and design involve graphic languages. These

graphic languages are made up of sets of symbols. So, the symbols are used according to certain

rules of methodology for communicating the complex relationships of information more clearly

than descriptive text.

Modeling is used frequently, during many of the phases of the software life cycle such as

analysis, design and implementation. Modeling like any other object-oriented development, is an

iterative process.

2. Why do we model?

Before constructing anything, a designer first build a model. The main reasons for constructing

models include:

• To test a physical entity before actually building it.

• To set the stage for communication between customers and developers.

• For visualization i.e. for finding alternative representations.

• For reduction of complexity in order to understand it.

3. Object Modeling Techniques:

The object modeling techniques is an methodology of object oriented analysis, design and

implementation that focuses on creating a model of objects from the real world and then to use

this model to develop object–oriented software. objectmodeling technique, OMT was developed

by James Rambaugh. Now-a-days, OMT is one of the most popular object oriented development

techniques. It is primarily used by system and software developers to support full life cycle

development while targeting object oriented implementations.

OMT has proven itself easy to understand, to draw and to use. It is very successful in many

application domains: telecommunication, transportation, compilers etc. The popular object

modelingtechnique are used in many real world problems. The object-oriented paradigm using

the OMT spans the entire development cycle, so there is no need to transform one type of model

to another.

Phases of OMT

Object oriented programming methodologies

B: Vishakha Chourasia Page 2

The OMT methodology covers the full software development life cycle. The methodology has the

following phase.

1. Analysis - Analysis is the first phase of OMT methodology. The aim of analysis phase is

to build a model of the real world situation to show its important properties and domain.

This phase is concerned with preparation of precise and correct modelling of the real

world. The analysis phase starts with defining a problem statement which includes a set

of goals. This problem statement is then expanded into three models; an object model, a

dynamic model and a functional model. The object model shows the static data structure

or skeleton of the real world system and divides the whole application into objects. In

others words, this model represents the artifacts of the system. The dynamic model

represents the interaction between artifacts above designed represented as events, states

and transitions. The functional model represents the methods of the system from the data

flow perspective. The analysis phase generates object model diagrams, state diagrams,

event flow diagrams and data flow diagrams.

2. System design - The system design phase comes after the analysis phase. System design

phase determines the overall system architecture using subsystems, concurrent tasks and

data storage. During system design, the high level structure of the system is designed.

The decisions made during system design are:

o The system is organized in to sub-systems which are then allocated to processes

and tasks, taking into account concurrency and collaboration.

o Persistent data storage is established along with a strategy to manage shared or

global information.

o Boundary situations are checked to help guide trade off priorities.

3. Object design - The object design phase comes after the system design phase is over.

Here the implementation plan is developed. Object design is concerned with fully

classifying the existing and remaining classes, associations, attributes and operations

necessary for implementing a solution to the problem. In object design:

o Operations and data structures are fully defined along with any internal objects

needed for implementation.

o Class level associations are determined.

o Issues of inheritance, aggregation, association and default values are checked.

4. Implementation - Implementation pahse of the OMT is a matter of translating the design

in to a programming language constructs. It is important to have good software

engineering practice so that the design phase is smoothly translated in to the

implementation phase. Thus while selecting programming language all constructs should

be kept in mind for following noteworthy points.

Object oriented programming methodologies

B: Vishakha Chourasia Page 3

o To increase flexibility.

o To make amendments easily.

o For the design traceability.

o To increase efficiency.

OMT Methodology use three kinds of model to describe system:

 Object Model

 Dynamic Model

 Functional Model

1. Object Model :The object model visualizes the elements in a software application in terms of

objects.

Object

An object is a real-world element in an object–oriented environment that may have a physical or

a conceptual existence. Each object has −

 Identity that distinguishes it from other objects in the system.

 State that determines the characteristic properties of an object as well as the values of the

properties that the object holds.

 Behavior that represents externally visible activities performed by an object in terms of

changes in its state.

Objects can be modelled according to the needs of the application. An object may have a

physical existence, like a customer, a car, etc.; or an intangible conceptual existence, like a

project, a process, etc.

Class

A class represents a collection of objects having same characteristic properties that exhibit

common behaviour. It gives the blueprint or description of the objects that can be created from it.

Creation of an object as a member of a class is called instantiation. Thus, object is an instance of

a class.

The constituents of a class are −

 A set of attributes for the objects that are to be instantiated from the class. Generally,

different objects of a class have some difference in the values of the attributes. Attributes

are often referred as class data.

 A set of operations that portray the behaviour of the objects of the class. Operations are

also referred as functions or methods.

Example

Object oriented programming methodologies

B: Vishakha Chourasia Page 4

Let us consider a simple class, Circle, that represents the geometrical figure circle in a two–

dimensional space. The attributes of this class can be identified as follows −

 x–coord, to denote x–coordinate of the center

 y–coord, to denote y–coordinate of the center

 a, to denote the radius of the circle

Some of its operations can be defined as follows −

 findArea(), method to calculate area

 findCircumference(), method to calculate circumference

 scale(), method to increase or decrease the radius

During instantiation, values are assigned for at least some of the attributes. If we create an object

my_circle, we can assign values like x-coord : 2, y-coord : 3, and a : 4 to depict its state. Now, if

the operation scale() is performed on my_circle with a scaling factor of 2, the value of the

variable a will become 8. This operation brings a change in the state of my_circle, i.e., the object

has exhibited certain behavior.

The benefits of using the object model are −

 It helps in faster development of software.

 It is easy to maintain. Suppose a module develops an error, then a programmer can fix

that particular module, while the other parts of the software are still up and running.

 It supports relatively hassle-free upgrades.

 It enables reuse of objects, designs, and functions.

 It reduces development risks, particularly in integration of complex systems.

2. Dynamic Model:

 Dynamic model describe those aspect of a system concerned with time and the

sequencing of operations, events that mark changes, sequences of events, State that

define the context for events and the organization of events and states. The dynamic

model capture control that aspects of a system that describe the sequences of operations

that occur, without regard for what the operation do, what they operate on or how they

are implemented.

 Represented by state diagrams

 Dynamic model shows the time dependent behaviour of the system and the objects in it.

 Begin analysis looking for events- externally visible stimuli and responses.

 We need to perform the following steps while constructing a dynamic model:

a. Prepare scenario of typical interaction sequences

b. Identify events between objects

c. Prepare an event trace for each scenario

d. Build a state diagram

e. Match events between objects to verify consistency

Object oriented programming methodologies

B: Vishakha Chourasia Page 5

3. Functional Model:

 The functional model describe those aspect of a system that are concerned with

transformation of values: functions, mapping, constraints and functional dependencies.

The functional model captures what a system does, without regard how or when it is

done.

 Functional model shows how values are computed without regard for sequencing,

decision or object structure.

 This model shows which value depend on which other values and the functions that relate

them.

 The following steps are performed in constructing a functional model:

a. Identify input and output values

b. Build data flow diagram showing functional dependencies,

c. Describe function

d. Identify constraints,

e. Specify optimization criterion

Data Flow Diagrams

Functional Modelling is represented through a hierarchy of DFDs. The DFD is a graphical

representation of a system that shows the inputs to the system, the processing upon the inputs,

the outputs of the system as well as the internal data stores. DFDs illustrate the series of

transformations or computations performed on the objects or the system, and the external

controls and objects that affect the transformation.

Rumbaugh et al. have defined DFD as, “A data flow diagram is a graph which shows the flow of

data values from their sources in objects through processes that transform them to their

destinations on other objects.”

The four main parts of a DFD are −

 Processes,

 Data Flows,

 Actors, and

 Data Stores.

The other parts of a DFD are −

 Constraints, and

 Control Flows.

Object oriented programming methodologies

B: Vishakha Chourasia Page 6

Features of a DFD

Processes

Processes are the computational activities that transform data values. A whole system can be

visualized as a high-level process. A process may be further divided into smaller components.

The lowest-level process may be a simple function.

Representation in DFD − A process is represented as an ellipse with its name written inside it

and contains a fixed number of input and output data values.

Example − The following figure shows a process Compute_HCF_LCM that accepts two

integers as inputs and outputs their HCF (highest common factor) and LCM (least common

multiple).

Data Flows

Data flow represents the flow of data between two processes. It could be between an actor and a

process, or between a data store and a process. A data flow denotes the value of a data item at

some point of the computation. This value is not changed by the data flow.

Representation in DFD − A data flow is represented by a directed arc or an arrow, labelled with

the name of the data item that it carries.

In the above figure, Integer_a and Integer_b represent the input data flows to the process, while

L.C.M. and H.C.F. are the output data flows.

A data flow may be forked in the following cases −

 The output value is sent to several places as shown in the following figure. Here, the

output arrows are unlabelled as they denote the same value.

 The data flow contains an aggregate value, and each of the components is sent to

different places as shown in the following figure. Here, each of the forked components is

labelled.

Object oriented programming methodologies

B: Vishakha Chourasia Page 7

Actors

Actors are the active objects that interact with the system by either producing data and inputting

them to the system, or consuming data produced by the system. In other words, actors serve as

the sources and the sinks of data.

Representation in DFD − An actor is represented by a rectangle. Actors are connected to the

inputs and outputs and lie on the boundary of the DFD.

Example − The following figure shows the actors, namely, Customer and Sales_Clerk in a

counter sales system.

Data Stores

Data stores are the passive objects that act as a repository of data. Unlike actors, they cannot

perform any operations. They are used to store data and retrieve the stored data. They represent a

data structure, a disk file, or a table in a database.

Representation in DFD − A data store is represented by two parallel lines containing the name

of the data store. Each data store is connected to at least one process. Input arrows contain

information to modify the contents of the data store, while output arrows contain information

retrieved from the data store. When a part of the information is to be retrieved, the output arrow

is labelled. An unlabelled arrow denotes full data retrieval. A two-way arrow implies both

retrieval and update.

Object oriented programming methodologies

B: Vishakha Chourasia Page 8

Example − The following figure shows a data store, Sales_Record, that stores the details of all

sales. Input to the data store comprises of details of sales such as item, billing amount, date, etc.

To find the average sales, the process retrieves the sales records and computes the average.

Constraints

Constraints specify the conditions or restrictions that need to be satisfied over time. They allow

adding new rules or modifying existing ones. Constraints can appear in all the three models of

object-oriented analysis.

 In Object Modelling, the constraints define the relationship between objects. They may

also define the relationship between the different values that an object may take at

different times.

 In Dynamic Modelling, the constraints define the relationship between the states and

events of different objects.

 In Functional Modelling, the constraints define the restrictions on the transformations and

computations.

Representation − A constraint is rendered as a string within braces.

Example − The following figure shows a portion of DFD for computing the salary of employees

of a company that has decided to give incentives to all employees of the sales department and

increment the salary of all employees of the HR department. It can be seen that the constraint

{Dept:Sales} causes incentive to be calculated only if the department is sales and the constraint

{Dept:HR} causes increment to be computed only if the department is HR.

Object oriented programming methodologies

B: Vishakha Chourasia Page 9

Control Flows

A process may be associated with a certain Boolean value and is evaluated only if the value is

true, though it is not a direct input to the process. These Boolean values are called the control

flows.

Representation in DFD − Control flows are represented by a dotted arc from the process

producing the Boolean value to the process controlled by them.

Example − The following figure represents a DFD for arithmetic division. The Divisor is tested

for non-zero. If it is not zero, the control flow OK has a value True and subsequently the Divide

process computes the Quotient and the Remainder.

Developing the DFD Model of a System

In order to develop the DFD model of a system, a hierarchy of DFDs are constructed. The top-

level DFD comprises of a single process and the actors interacting with it.

At each successive lower level, further details are gradually included. A process is decomposed

into sub-processes, the data flows among the sub-processes are identified, the control flows are

Object oriented programming methodologies

B: Vishakha Chourasia Page 10

determined, and the data stores are defined. While decomposing a process, the data flow into or

out of the process should match the data flow at the next level of DFD.

Example − Let us consider a software system, Wholesaler Software, that automates the

transactions of a wholesale shop. The shop sells in bulks and has a clientele comprising of

merchants and retail shop owners. Each customer is asked to register with his/her particulars and

is given a unique customer code, C_Code. Once a sale is done, the shop registers its details and

sends the goods for dispatch. Each year, the shop distributes Christmas gifts to its customers,

which comprise of a silver coin or a gold coin depending upon the total sales and the decision of

the proprietor.

The functional model for the Wholesale Software is given below. The figure below shows the

top-level DFD. It shows the software as a single process and the actors that interact with it.

The actors in the system are −

 Customers

 Salesperson

 Proprietor

In the next level DFD, as shown in the following figure, the major processes of the system are

identified, the data stores are defined and the interaction of the processes with the actors, and the

data stores are established.

In the system, three processes can be identified, which are −

 Register Customers

 Process Sales

 Ascertain Gifts

The data stores that will be required are −

 Customer Details

 Sales Details

 Gift Details

Object oriented programming methodologies

B: Vishakha Chourasia Page 11

The following figure shows the details of the process Register Customer. There are three

processes in it, Verify Details, Generate C_Code, and Update Customer Details. When the

details of the customer are entered, they are verified. If the data is correct, C_Code is generated

and the data store Customer Details is updated.

Object oriented programming methodologies

B: Vishakha Chourasia Page 12

The following figure shows the expansion of the process Ascertain Gifts. It has two processes in

it, Find Total Sales and Decide Type of Gift Coin. The Find Total Sales process computes the

yearly total sales corresponding to each customer and records the data. Taking this record and the

decision of the proprietor as inputs, the gift coins are allotted through Decide Type of Gift Coin

process.

Advantages and Disadvantages of DFD

Advantages Disadvantages

DFDs depict the boundaries of a system and hence are

helpful in portraying the relationship between the

external objects and the processes within the system.

DFDs take a long time to create, which may not

be feasible for practical purposes.

They help the users to have a knowledge about the

system.

DFDs do not provide any information about the

time-dependent behavior, i.e., they do not specify

when the transformations are done.

The graphical representation serves as a blueprint for

the programmers to develop a system.

They do not throw any light on the frequency of

computations or the reasons for computations.

DFDs provide detailed information about the system

processes.
The preparation of DFDs is a complex process

that needs considerable expertise. Also, it is

Object oriented programming methodologies

B: Vishakha Chourasia Page 13

difficult for a non-technical person to understand.

They are used as a part of the system documentation.
The method of preparation is subjective and

leaves ample scope to be imprecise.

Relationship between Object, Dynamic, and Functional Models

The Object Model, the Dynamic Model, and the Functional Model are complementary to each

other for a complete Object-Oriented Analysis.

 Object modelling develops the static structure of the software system in terms of objects.

Thus it shows the “doers” of a system.

 Dynamic Modelling develops the temporal behavior of the objects in response to external

events. It shows the sequences of operations performed on the objects.

 Functional model gives an overview of what the system should do.

Functional Model and Object Model

The four main parts of a Functional Model in terms of object model are −

 Process − Processes imply the methods of the objects that need to be implemented.

 Actors − Actors are the objects in the object model.

 Data Stores − These are either objects in the object model or attributes of objects.

 Data Flows − Data flows to or from actors represent operations on or by objects. Data

flows to or from data stores represent queries or updates.

Functional Model and Dynamic Model

The dynamic model states when the operations are performed, while the functional model states

how they are performed and which arguments are needed. As actors are active objects, the

dynamic model has to specify when it acts. The data stores are passive objects and they only

respond to updates and queries; therefore the dynamic model need not specify when they act.

Object Model and Dynamic Model

The dynamic model shows the status of the objects and the operations performed on the

occurrences of events and the subsequent changes in states. The state of the object as a result of

the changes is shown in the object model.

Structure Analysis and Structure Design (SA/SD)

Object oriented programming methodologies

B: Vishakha Chourasia Page 14

In software engineering, structured analysis (SA) and structured design (SD) are methods for

analyzing business requirements and developing specifications for converting practices into

computer programs, hardware configurations, and related manual procedures.

Structured analysis and design techniques are fundamental tools of systems analysis. Structured

analysis consists of interpreting the system concept (or real world situations) into data and

control terminology represented by data flow diagrams. The flow of data and control from

bubble to the data store to bubble can be difficult to track and the number of bubbles can

increase.

 Fig 1: SA/SD basic element

Structured Analysis Tools

Structured Analysis views a system from the perspective of the data flowing through it. The

function of the system is described by processes that transform the data flows. Structured

analysis takes advantage of information hiding through successive decomposition (or top down)

analysis. This allows attention to be focused on pertinent details and avoids confusion from

looking at irrelevant details. As the level of detail increases, the breadth of information is

reduced. The result of structured analysis is a set of related graphical diagrams, process

descriptions, and data definitions. They describe the transformations that need to take place and

the data required to meet a system's functional requirements.

various tools and techniques are used for system development. They are −

 Data Flow Diagrams

 Data Dictionary

 Decision Trees

 Decision Tables

 Structured English

 Pseudocode

Object oriented programming methodologies

B: Vishakha Chourasia Page 15

1. Data Flow Diagrams (DFD) or Bubble Chart

It is a technique developed by Larry Constantine to express the requirements of system in a

graphical form.

 It shows the flow of data between various functions of system and specifies how the

current system is implemented.

 It is an initial stage of design phase that functionally divides the requirement

specifications down to the lowest level of detail.

 Its graphical nature makes it a good communication tool between user and analyst or

analyst and system designer.

 It gives an overview of what data a system processes, what transformations are

performed, what data are stored, what results are produced and where they flow.

Basic Elements of DFD

DFD is easy to understand and quite effective when the required design is not clear and the user

wants a notational language for communication. However, it requires a large number of

iterations for obtaining the most accurate and complete solution.

The following table shows the symbols used in designing a DFD and their significance –

Symbol Name Symbol Meaning

Square

Source or destination of data

Arrow

Data flow

Open Rectangle

Process transforming data

flow

circle

Data store

Object oriented programming methodologies

B: Vishakha Chourasia Page 16

types of DFD

DFDs are of two types: Physical DFD and Logical DFD. The following table lists the points that

differentiate a physical DFD from a logical DFD.

Physical DFD Logical DFD

It is implementation dependent. It shows which

functions are performed.

It is implementation independent. It focuses only on

the flow of data between processes.

It provides low level details of hardware, software,

files, and people.

It explains events of systems and data required by

each event.

It depicts how the current system operates and how

a system will be implemented.

It shows how business operates; not how the system

can be implemented.

Context Diagram

A context diagram helps in understanding the entire system by one DFD which gives the

overview of a system. It starts with mentioning major processes with little details and then goes

onto giving more details of the processes with the top-down approach.

The context diagram of mess management is shown below.

Object oriented programming methodologies

B: Vishakha Chourasia Page 17

Data Dictionary

A data dictionary is a structured repository of data elements in the system. It stores the

descriptions of all DFD data elements that is, details and definitions of data flows, data stores,

data stored in data stores, and the processes.

A data dictionary improves the communication between the analyst and the user. It plays an

important role in building a database. Most DBMSs have a data dictionary as a standard feature.

For example, refer the following table −

Sr.No. Data Name Description No. of Characters

1 ISBN ISBN Number 10

2 TITLE title 60

3 SUB Book Subjects 80

4 ANAME Author Name 15

Decision Trees

Decision trees are a method for defining complex relationships by describing decisions and

avoiding the problems in communication. A decision tree is a diagram that shows alternative

actions and conditions within horizontal tree framework. Thus, it depicts which conditions to

consider first, second, and so on.

Decision trees depict the relationship of each condition and their permissible actions. A square

node indicates an action and a circle indicates a condition. It forces analysts to consider the

sequence of decisions and identifies the actual decision that must be made.

Object oriented programming methodologies

B: Vishakha Chourasia Page 18

The major limitation of a decision tree is that it lacks information in its format to describe what

other combinations of conditions you can take for testing. It is a single representation of the

relationships between conditions and actions.

For example, refer the following decision tree −

Pseudocode

A pseudocode does not conform to any programming language and expresses logic in plain

English.

 It may specify the physical programming logic without actual coding during and after the

physical design.

 It is used in conjunction with structured programming.

 It replaces the flowcharts of a program.

Object oriented programming methodologies

B: Vishakha Chourasia Page 19

Structured Analysis vs. Object Oriented Analysis

The Structured Analysis/Structured Design (SASD) approach is the traditional approach of

software development based upon the waterfall model. The phases of development of a system

using SASD are −

 Feasibility Study

 Requirement Analysis and Specification

 System Design

 Implementation

 Post-implementation Review

Now, we will look at the relative advantages and disadvantages of structured analysis approach

and object-oriented analysis approach.

Advantages/Disadvantages of Object Oriented Analysis

Advantages Disadvantages

Focuses on data rather than the procedures as in

Structured Analysis.

Functionality is restricted within objects. This may

pose a problem for systems which are intrinsically

procedural or computational in nature.

The principles of encapsulation and data hiding

help the developer to develop systems that cannot

be tampered by other parts of the system.

It cannot identify which objects would generate an

optimal system design.

The principles of encapsulation and data hiding

help the developer to develop systems that cannot

be tampered by other parts of the system.

The object-oriented models do not easily show the

communications between the objects in the system.

It allows effective management of software

complexity by the virtue of modularity.

All the interfaces between the objects cannot be

represented in a single diagram.

It can be upgraded from small to large systems at a

greater ease than in systems following structured

analysis.

Advantages/Disadvantages of Structured Analysis

Advantages Disadvantages

As it follows a top-down approach in contrast to bottom- In traditional structured analysis models, one

Object oriented programming methodologies

B: Vishakha Chourasia Page 20

up approach of object-oriented analysis, it can be more

easily comprehended than OOA.

phase should be completed before the next

phase. This poses a problem in design,

particularly if errors crop up or requirements

change.

It is based upon functionality. The overall purpose is

identified and then functional decomposition is done for

developing the software. The emphasis not only gives a

better understanding of the system but also generates

more complete systems.

The initial cost of constructing the system is

high, since the whole system needs to be

designed at once leaving very little option to

add functionality later.

The specifications in it are written in simple English

language, and hence can be more easily analyzed by non-

technical personnel.

It does not support reusability of code. So, the

time and cost of development is inherently

high.

Jackson System Development (JSD)

jackson system development (JSD) is a linear software development methodology developed

by Michael A. Jackson and John Cameron in the 1980s.

Jackson System Development (JSD) is a method of system development that covers the software

life cycle either directly or, by providing a framework into which more specialized techniques

can fit. Jackson System Development can start from the stage in a project when there is only a

general statement of requirements. However, many projects that have used Jackson System

Development actually started slightly later in the life cycle, doing the first steps largely from

existing documents rather than directly with the users. The later steps of JSD produce the code of

the final system. Jackson’s first method, Jackson Structured Programming (JSP), is used to

produce the final code. The output of the earlier steps of JSD are a set of program design

problems, the design of which is the subject matter of JSP. Maintenance is also addressed by

reworking whichever of the earlier steps are appropriate.

Principles of operation

Three basic principles of operation of JSD is that:

 Development must start with describing and modelling the real world, rather than

specifying or structuring the function performed by the system. A system made using

JSD method performs the simulation of the real world before any direct attention is paid

to function or purpose of the system.

 An adequate model of a time-ordered world must itself be time-ordered. Main aim is to

map progress in the real world on progress in the system that models it.

Object oriented programming methodologies

B: Vishakha Chourasia Page 21

 The way of implementing the system is based on transformation of specification into

efficient set of processes. These processes should be designed in such a manner that it

would be possible to run them on available software and hardware.

JSD steps

When it was originally presented by Jackson in 1982 the method consisted of six steps:

1. Entity/action step

2. Initial model step

3. Interactive function step

4. Information function step

5. System timing step

6. System implementation step

Later, some steps were combined to create a method with only three steps

1. Modelling stage (analysis): with the entity/action step and entity structures step.

2. Network stage (design): with the initial model step, function step, and system timing step.

3. Implementation stage (realisation): the implementation step.

Modeling stage

In the modeling stage the designer creates a collection of entity structure diagrams and identifies

the entities in the system, the actions they perform, the time-ordering of the actions in the life of

the entities, and the attributes of the actions and entities. Entity structure diagrams use the

diagramming notation of Jackson Structured Programming structure diagrams. Purpose of these

diagrams is to create a full description of the aspects of the system and the organisation.

Developers have to decide which things are important and which are not. Good communication

between developers and users of the new system is very important.

This stage is the combination of the former entity/action step and the entity structures step.

Network stage

In the network stage a model of the system as a whole is developed and represented as a system

specification diagram (SSD) (also known as a network diagram). Network diagrams show

processes (rectangles) and how they communicate with each other, either via state vector

connections (diamonds) or via datastream connections (circles). In this stage is the functionality

of the system defined. Each entity becomes a process or program in the network diagram.

External programs are later added to the network diagrams. The purpose of these programs is to

process input, calculate output and to keep the entity processes up-to-date. The whole system is

described with these network diagrams and are completed with descriptions about the data and

connections between the processes and programs.

Object oriented programming methodologies

B: Vishakha Chourasia Page 22

The initial model step specifies a simulation of the real world. The function step adds to this

simulation the further executable operations and processes needed to produce output of the

system. System timing step provides synchronisation among processes, introduces constraints.

This stage is the combination of the former ‘Initial model’ step, the ‘function’ step and the

‘system timing’ step.

Implementation stage

In the implementation stage the abstract network model of the solution is converted into a

physical system, represented as a system implementation diagram (SID). The SID shows the

system as a scheduler process that calls modules that implement the processes. Datastreams are

represented as calls to inverted processes. Database symbols represent collections of entity state-

vectors, and there are special symbols for file buffers (which must be implemented when

processes are scheduled to run at different time intervals).

The central concern of implementation step is optimization of the system. It is necessary to

reduce the number of processes because it is impossible to provide each process that is contained

in specification with its own virtual processor. By means of transformation, processes are

combined in order to limit their number to the number of processors.

	Phases of OMT
	Object
	Class

	Data Flow Diagrams
	Features of a DFD
	Processes
	Data Flows
	Actors
	Data Stores
	Constraints
	Control Flows

	Developing the DFD Model of a System
	Advantages and Disadvantages of DFD
	Relationship between Object, Dynamic, and Functional Models
	Functional Model and Object Model
	Functional Model and Dynamic Model
	Object Model and Dynamic Model

	Structured Analysis Tools
	1. Data Flow Diagrams (DFD) or Bubble Chart
	Basic Elements of DFD
	types of DFD
	Context Diagram

	Data Dictionary
	Decision Trees
	Pseudocode
	Structured Analysis vs. Object Oriented Analysis
	Advantages/Disadvantages of Object Oriented Analysis
	Advantages/Disadvantages of Structured Analysis

	Principles of operation
	JSD steps
	Modeling stage
	Network stage
	Implementation stage

